Egyenlet bármely két egyenlőségjellel összekapcsolt kifejezés. Az egyenletet szokás olyan speciális nyitott mondatnak (változó(k)tól függő állítás) is nevezni, amelynek alaphalmaza számhalmaz. Egyenlőtlenségről beszélünk, ha a két kifejezést a kisebb (<), nagyobb (>), nemkisebb (≥), nemnagyobb (≤ ) relációs jelek kapcsolnak össze. Az egyenleteket, egyenlőtlenségeket kétféleképpen is értelmezhetjük. I. Az elsőTovább

A másodfokú egyenlet általános alakja: ​\( ax^{2}+bx+c=0 \)​; a,b,c∈ℝ; a≠0. A másodfokú egyenlet megoldóképletének levezetése szorzattá alakítással: Emeljük ki a másodfokú tag együtthatóját az a-t! Itt kihasználtuk azt a feltételt, hogy a≠0. A zárójelben szereplő másod- és elsőfokú tagból képezzünk teljes négyzetet! A szögletes zárójelben lévő második tagban végezzük elTovább

A másodfokú egyenlet megoldóképletében a négyzetgyök alatt szereplő ​\( b^{2}-4ac \)​ kéttagú kifejezést a másodfokú egyenlet diszkriminánsának nevezzük. (gyakran D-vel jelöljük.) Itt az a, b, c betűk az ​\( ax^{2}+bx+c=0 \)​ másodfokú egyenlet általános alakjában szereplő együtthatók. (a≠0). Ettől a ​\( D=b^{2}-4ac \)​ kéttagú kifejezéstől függ a másodfokú egyenlet megoldásainak száma a valós számokTovább

A másodfokú egyenlet általános alakja: ​\( ax^{2}+bx+c=0 \), ahol (a≠0). Az ilyen alakra hozott egyenleteknek a megoldását legegyszerűbben a másodfokú egyenlet megoldóképletének segítségével végezzük el. Eszerint, ha a másodfokú egyenlet diszkriminánsa nem negatív, azaz ​\( b^{2}-4ac≥0 \)​, akkor az egyenletnek van megoldása a valós számok között, és azokat a következő formulákkalTovább

Diophantoszi egyenletek nevezzük azokat az egész együtthatós egyenleteket, amelyekben ugyan több ismeretlen is szerepel, mint amennyi egyenlet van, ezek együtthatói egész számok és a megoldásokat is csak az egész számok között keressük. Bár Diophantosz görög matematikusról nevezték el ezeket az egyenleteket, de ő maga nem foglalkozott velük. Ilyen egyenlet példáulTovább

Definíció: Két nemnegatív szám számtani közepének a két szám összegének a felét nevezzük. A számtani közepet szokás aritmetikai középnek is nevezni, és „A” betűvel jelölni. Formulával: ​\( A(a;b)=\frac{a+b}{2} \) , ahol a;b∈ℝ​; a≥0; b≥0. Például: Ha a=8; b=10, akkor A(8;10)=(8+10)/2=9. Két szám számtani közepe ugyanannyival nagyobb az egyik számnál, mint amennyivel kisebb aTovább

Definíció: Két nemnegatív szám számtani közepének a két szám összegének a felét nevezzük. A számtani közepet szokás aritmetikai középnek is nevezni, és „A” betűvel jelölni. Formulával:  ​\( A(a;b)=\frac{a+b}{2} \) , ahol a;b∈ℝ​; a≥0; b≥0. Definíció: Két nemnegatív szám mértani közepének a két szám szorzatának négyzetgyökét nevezzük. A mértani közepet szokás geometria középnek isTovább

Állítás: Az egyes nevezetes közepek között a következő relációk érvényesek adott  nem-negatív valós számok esetén: Harmonikus közép (H) ≤ Geometria közép (G)≤ Számtani közép (A)≤ Négyzetes közép. Egyenlőség csak egyenlő számok esetén áll fenn. Formulával (két szám esetére): ​\( H(a;b)=\frac{2ab}{a+b}≤G(a;b)=\sqrt{a·b}≤A(a;b)=\frac{a+b}{2}≤N(a,b)=\sqrt{\frac{a^{2}+b^{2}}{2}} \)​​ A számtani és mértani közép közötti  ​\( G(a;b)=\sqrt{a·b}≤A(a;b)=\frac{a+b}{2} \)​ összefüggés bizonyításátTovább

A két nemnegatív számra vonatkozó nevezetes közepeket a trapéz két párhuzamos oldalára vonatkoztatva lehet szemléltetni. Ezeket a nevezetes közepeket a mellékelt ábrán láthatjuk: 1. Számtani közép: A1A2 szakasz.   2. Mértani közép: G1G2 szakasz. 3. Harmonikus közép: H1H2 szakasz. 4. Négyzetes közép: N1N2 szakasz.   1. Állítás: A trapéz középvonala a kétTovább

1. A legismertebbek az un. közepek között fennálló egyenlőtlenségek: Harmonikus közép≤Számtani közép≤Mértani (Geometriai) közép≤Négyzetes közép. Formulával (két nem-negatív) valós szám esetén): H(a;b)≤G(a;b)≤A(a;b)≤N(a;b), ahol a;b∈ℝ​; a≥0; b≥0. Ezeket az egyenlőtlenségeket értelmezhetjük nemcsak két, hanem több valós számra is. A közöttük fennálló egyenlőtlenségek igazolását itt találhatjuk. 2. Az alábbi egyenlőtlenség a következőképpen szól: Bármely nullától eltérőTovább