Ha egy körhöz egy külső “P” pontból szelőket húzunk, azt tapasztalhatjuk, hogy ahogy a szelő végigsöpör a körön, A “P” ponttól a távolabbi metszéspontokig terjedő szakaszok egy darabig növekednek, ugyanakkor a közelebbi metszéspontokig terjedő szakaszok csökkennek. A “P” ponttól a távolabbi metszéspontokig terjedő szakaszok (PB1,PB2, PB3) egy darabig növekednek, ugyanakkor a közelebbi metszéspontokigTovább

Aranymetszés, mint speciális arányt, szokták úgy is emlegetni, hogy “divina proportione”, azaz az “isteni arány”. Definíció: Aranymetszésről beszélünk, amikor egy mennyiséget, illetve egy adott szakaszt úgy osztunk két részre, hogy a kisebbik rész úgy aránylik a nagyobbikhoz, mint a nagyobbik rész az egészhez. Rajz és formula: Aránypárral: p:q=q:(p+q) Zeising németTovább

A Pitagorasz tétel a geometria, sőt talán a matematika egyik legközismertebb tétele, amely a derékszögű háromszög oldalai közötti összefüggést mondja ki. Pitagorasz tétele: A derékszögű háromszög befogóira emelt négyzetek területeinek összege egyenlő az átfogóra emelt négyzet területével. A mellékelt ábra jelölései szerint: a2+b2=c2. A tétel bizonyítása: Készítsünk két darab (a+b)Tovább

Az arány szót hallván elsősorban nem, vagy nemcsak matematikai fogalomra gondolunk. Az arány, arányos szavak sokkal tágabban is értelmezhetők. De joggal mondhatjuk, az arányos szó alapvetően pozitív értelmezéssel bír. Ha egy épület, egy test nem arányos, hanem aránytalan, azt nem szoktuk szépnek gondolni. Nem véletlen, hogy Arisztotelész az arányt a szépségTovább