Definíció: Pitagoraszi számhármason három olyan pozitív egész szám együttesét értjük, amelyek kielégítik az x2+y2=z2 egyenletet. x;y;z∈ℤ. Ennek a speciális diophantoszi egyenletnek nyilvánvaló megoldása például x=3, y=4 és z=5. A pitagoraszi számhármasokkal mint oldalhosszúságokkal szerkesztett háromszögek mindig derékszögűek lesznek, hiszen megfelelnek Pitagorasz tételének. Természetesen egy számhármas pozitív egész számú többszöröse isTovább

Diophantoszi egyenletek nevezzük azokat az egész együtthatós egyenleteket, amelyekben ugyan több ismeretlen is szerepel, mint amennyi egyenlet van, ezek együtthatói egész számok és a megoldásokat is csak az egész számok között keressük. Bár Diophantosz görög matematikusról nevezték el ezeket az egyenleteket, de ő maga nem foglalkozott velük. Ilyen egyenlet példáulTovább

Van-e megoldása az egész számok körében az xn+yn=zn  egyenletnek?  Ez a probléma már régóta izgatta a matematikusokat. Az x2+y2=z2  egyenlet Pitagorasz tételét jelenti, ahol x, y egy derékszögű háromszög befogóinak oldalhosszúságait, z pedig az átfogó hosszúságát jelenti, tehát pozitív valós számok. Az olyan pozitív egész számokat, amelyek kielégítik a Pitagorasz tételt,Tovább