1. Hatvány fogalma pozitív egész kitevőre. Ha a hatványozás kitevője pozitív egész szám, akkor a hatványozást egy olyan speciális szorzatként definiáltuk, amelyben a tényezők megegyeznek és a tényezők száma a hatványkitevő értékével egyezik, azaz ​\( a^{3}=a·a·a \)​.  Ebből a definícióból következtek a hatványozás azonosságai. Ezek eredményeként is felvetődött az az igény,Tovább

Hatvány fogalmát pozitív egész kitevőre olyan szorzatként definiáltuk, amelyben a tényezők megegyeznek, azaz ​\( a^{3}=a·a·a \). Ebből a definícióból következtek a hatványozás azonosságai. Ezek eredményeként is felvetődött az az igény, hogy a kitevőben 0, negatív egész, sőt törtszám is lehessen. Ezekre az esetekre azonban új definíciókat kell adni, de eztTovább

Hatványozás azonosságai: 1. ​\( (a·b)^{n}=a^{n}·b^{n} \)​ Egy szorzatot tényezőnként is lehet hatványozni. 2. ​\( \left( \frac{a}{b} \right)^n=\frac{a^n}{b^n} \)​ Egy törtet úgy is hatványozhatunk, hogy külön hatványozzuk a számlálót és külön a nevezőt. 3. ​\( \left(a^{n} \right) ^{k}=a^{n·k} \)​ Egy hatványt úgy is hatványozhatunk, hogy az alapot a kitevők szorzatára emeljük. 4.Tovább

A hatványozásra vonatkozó azonosságok és a logaritmus definíciójából következik, hogy a logaritmussal végzett műveleteknél is vannak olyan azonosságok, amelyek megkönnyítik a logaritmus alkalmazását. Az alábbiakban öt azonosságot és azok bizonyítását láthatjuk. Az azonosságok bizonyításánál fel fogjuk használni a logaritmus definícióját valamint a hatványozásra vonatkozó azonosságokat. A leggyakrabban alkalmazott azonosságok: 1. ​\( log_{a}(x·y)=log_{a}{x}+log_{a}{y} \)​Tovább