1. Példa: A mellékelt ábrán (Galton deszkán) egy golyó gurul lefelé. Minden akadálynál ugyanakkora (0.5) valószínűséggel megy jobbra vagy balra. Ezért minden út egyformán valószínű. A pályán 5 szinten vannak akadályok (elágazási pontok) és a végén 6 rekesz [0;5] valamelyikébe  érkezik meg a golyó. Mi a valószínűsége annak,  hogy aTovább

​Nézzük meg a kéttagú kifejezések pozitív egész kitevőjű hatványának rendezett polinom alakban történő felírásakor kapott kifejezéseket! (a+b)2=a2+2ab+b2. (a+b)3=a3+3a2b+3ab2+b3. (a+b)4=a4+4a3b+6a2b2+4ab3+b4. Ezeket a polinomokat a hatványozás elvégzésével, és az összevonásokkal viszonylag könnyen meg tudtuk kapni. Ha azonban egy kicsit általánosabban próbáljuk ezt problémát megközelíteni, akkor a kérdés úgy vethető fel, hogyan írhatóTovább

Binomiális tétel kimondja, hogy kéttagú kifejezések pozitív egész kitevőjű hatványának rendezett polinom alakban történő felírásakor a következő kifejezéseket kapjuk: Ha a és b tetszőleges valós számok és n pozitív egész szám, akkor: A tételben szereplő ​\( \binom{n}{k}​ \)​ együtthatókat binomiális együtthatóknak is nevezik. Pascal francia matematikus 1654-ben (a +b)n binomiális együtthatókatTovább

Legyen adott egy véges A halmaz. Jelölje n az A halmaz elemeinek a számát: n=|A|. Például: A={a, b, c, d}. Ekkor |A|=n=4. Hány részhalmaza van ennek az A halmaznak? Azt tudjuk, hogy az üres halmaz minden halmaznak részhalmaza, és minden halmaz részhalmaza önmagának. Szedjük táblázatba az A halmaz lehetséges részhalmazait:Tovább

Newton életéről Kiváló angol fizikus, csillagász és matematikus. Régi nemesi család tagjaként született. Nevét egy kis angliai faluról kapta. Gyermekkorában nem volt valami jó tanuló de 18 éves korában már kitűnő bizonyítvánnyal végezett. Csak 19 éves korában kezdett el a matematikával és a természettudománnyal foglalkozni.  Kepler “Optika”, Eukleidész “Elemek”, Descartes “Geometria”Tovább