A trigonometria fejlődésének, kialakulásának mozgató rugója a csillagászat és persze a közlekedés, a hajózás volt. Az ókori görög csillagászat a babiloniaktól vett át nagyon sok mindent. Elsőként kell megemlíteni Hipparkhosz ókori görög csillagászt és matematikust, akinek ezen a téren kifejtett tevékenységét Ptolemaiosz “Almageszt” című művéből ismerjük. Úttörő munkát végzett a gömbháromszögekkelTovább

Két háromszög hasonló, ha két szöge egyenlő. Hasonló háromszögekben az oldalak aránya egyenlő. Ebből következik, hogy bármely két derékszögű háromszög hasonló, ha egy hegyesszögük egyenlő. Ebben az esetben tehát oldalaik aránya egyenlő. Ha egy derékszögű háromszögben megváltoztatjuk az egyik hegyesszöget, akkor megváltozik az oldalak aránya és fordítva: ha két derékszögűTovább

Az ​\( \vec{i} \) és ​\( \vec{j} \) bázisvektorok által meghatározott (xy) koordináta-rendszerben az  ​\( \vec{i} \)  egységvektortól ß szöggel elforgatott ​\( \vec{e} \) egységvektor meghatároz egy P pontot az egységsugarú kör kerületén. Definíciók: Egy ß szög szinusza a koordinátasíkon az \( \vec{i} \)  egységvektortól ß szöggel elforgatott e egységvektor második (y) koordinátája.Tovább

Tetszőleges szög tangensének és kotangensének meghatározásához felhasználjuk a tetszőleges szinuszára és koszinuszára vonatkozó definíciókat. Definíció: Tetszőleges szög tangense a szög szinuszának és koszinuszának hányadosával egyenlő. Formulával: ​\( tgα=\frac{sinα}{cosα}, \; cosα≠0; \; α≠\frac{ π }{2}+k· π , \; k∈ℤ \)​. A definíciónak geometriai értelmezést is tudunk adni. Egy szög tangense, a koordinátasíkonTovább

Nevezetes szögeknek szoktuk mondani a 30°-os, a 45°-os és a 60°-os szögeket. Ezen szögek szögfüggvényeinek pontos értékét az alábbiakban lehet meghatározni. 1.  A 45° -os szög szögfüggvényeinek meghatározásához tekintsük a jobboldali ábrán az egységnyi befogójú derékszögű háromszöget. Ennek hegyesszögei 45° -osak. Átfogóját Pitagorász tétele segítségével kapjuk: BA=c=​\( \sqrt{2} \) . A szögfüggvényeinek  definíciója szerint:Tovább

A derékszögű háromszgek oldalhosszúságaira megfogalmazott Pitagorasz tétel, mint összefüggés alkalmazható a szögek szinuszára és koszinuszára is. A sinus, cosinus szögfüggvények általános értelmezése szerint az α szöggel elforgatott  ​\( \vec{e} \)​ egységvektor koordinátái: ​\( \vec{e} \)​(cosα ;sinα ).   A.) Amennyiben az elforgatott egységvektor nem esik rá a koordináta tengelyek egyikéreTovább

A háromszög területének kiszámítása gyakori feladat. Különböző képletek segítenek ebben. 1. A legismertebb képlet az oldal és a hozzátartozó magasság ismeretében határozza meg a területet: TΔ=a⋅ma/2. 2. Háromszög területe három oldal ismeretében. Ez a Héron képlet: ​\( t=\sqrt{s(s-a)(s-b)(s-c)} \)  , ahol s a háromszög kerületének a fele, azaz  ​\( s=\frac{a+b+c}{2} \)​.Tovább

Állítás: Legyen S1 és S2 síkok hajlásszöge α és az S1 síkban fekvő t1 területű háromszög S2-re merőleges vetületének területe t2. Ekkor t2=t1⋅ cosα. A tétel bizonyítását három lépésben fogjuk végezni. 1. Feltételezzük, hogy a háromszög egyik oldala illeszkedik a két sík metszésvonalára 2. Feltételezzük, hogy a háromszög csak egyikTovább

Állítás: Egy kör r hosszúságú sugara, az a hosszúságú húrja és az ahhoz tartozó α kerületi szög között a következő összefüggés áll fenn: a=2⋅r⋅sinα. A bizonyítást három esetre érdemes elvégezni. 1. Amikor a húrhoz tartozó kerületi szög hegyesszög. 2. Amikor a húrhoz tartozó kerületi szög derékszög. 3. Amikor a húrhoz tartozóTovább

Tétel: Bármely háromszögben az oldalak aránya megegyezik a velük szemközti szögek szinuszának arányával. A háromszögek területe meghatározható bármelyik két oldalának és a közbezárt szögének ismeretében, függetlenül attól, hogy az hegyes vagy tompa esetleg derékszög: ​       \( t=\frac{a·c·sinβ}{2} \)​, vagy ​\( t=\frac{a·b·sinγ}{2} \)​ vagy ​\( t=\frac{b·c·sinα}{2} \)​.      Tovább